A Complete Strategy for Bicycle Infrastructure

KCMO Street Network

KCMO On-Street Bike Lane Network
Measuring Demand

Where would people ride if it was safe and comfortable to do so?
Public Input

- What types of trips do people take or want to take?
- Where do people want to ride?
- What types of facilities do people prefer?
- Where are areas of concern (safety, access, etc.)?
Network Connectivity

- What routes are critical to establish an interconnected system?

- What projects bridge major gaps in the bicycle network?
Safety and Collisions

- Areas with high frequency of crashes
- Areas with high frequency of crashes per bicycle miles travelled
- Crash types at problem locations
- Street type
- Existing bicycle facilities
- Posted and observed vehicle speeds
Equity

- Areas with high concentrations of carless households
- Areas with limited transit service
- Areas with high concentrations of poverty
- Areas with high average commute length/time
Feasibility for High Level of Comfort

- Topography
- Major barriers (highways, railroads)
- Opportunities for a direct route
- Traffic speed
- Available space for facilities
Measuring Demand

- Latent Demand Analysis - Where would people ride bicycles if facilities made it convenient and comfortable to do so?

- Not intended as a trip projection tool

- Traditional travel demand models don’t account for circulation network, street, or built environment that are minor for car trips but very important for cyclists.

- Observations can’t be a direct proxy for latent demand because they already internalize physical barriers and constraints that impact a cyclist’s decisions.
Measuring Demand

- GIS-based analysis using City and Census data

- Citywide bicycle observations could be used to calibrate based on statistically significant factors that relate to observed behavior

- Without observation data, we used the most complete national research available to make assumptions about how and where people would ride.
Demand Analysis Model

- Population Density
 - Demographic Modifiers
 - Adjusted Population Score
 - Generators Score
 - Land Use Diversity Modifier
 - Bicycle Demand

- Employment Density
 - Employment Destinations
 - Retail/Services Destinations
 - Schools/Religious Destinations
 - Social/Entertainment Destinations
 - Recreation Destinations
 - Transit Destinations
 - Distance Modifiers
 - Adjusted Employment Score
 - Destination Split Modifier
 - Attractors Score

<table>
<thead>
<tr>
<th>Bicycle Demand Score</th>
<th>100.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Trip Generators</td>
<td>50.0</td>
</tr>
<tr>
<td>Adjusted Population Density</td>
<td>35.0</td>
</tr>
<tr>
<td>Adjusted Employment Density</td>
<td>15.0</td>
</tr>
<tr>
<td>Bicycle Trip Attractors</td>
<td>50.0</td>
</tr>
<tr>
<td>Employment Destinations</td>
<td>5.2</td>
</tr>
<tr>
<td>Retail/Service Destinations</td>
<td>7.2</td>
</tr>
<tr>
<td>School/Religious Destinations</td>
<td>2.4</td>
</tr>
<tr>
<td>Social/Entertainment Destinations</td>
<td>15.6</td>
</tr>
<tr>
<td>Recreation Destinations</td>
<td>9.2</td>
</tr>
<tr>
<td>Transit Destinations</td>
<td>10.4</td>
</tr>
</tbody>
</table>
Research on Cycling

- National data helped to inform the weights and factors applied to this demand analysis
- Demographic profiles of cycling use were combined with local census data to modify trip generation likelihood
Demographic Modifiers

- Areas in red have a demographic profile with the strongest positive correlation to bicycle trips.
Adjusted Population and Employment Density

Adjusted population density

Adjusted employment density
Bicycle Trip Attractors

- Employment Destinations
- Retail/Service Destinations
- Recreation Destinations
- School/Religious Destinations
- Social/Entertainment Destinations
- Transit Destinations
Land Use Diversity Modifier

- Research shows a positive correlation between mix of uses and bicycle trips.
Findings

- Highest demand: Downtown, Westport, and the Plaza. High demand also exists in corridors connecting these nodes, as well as large portions of the historic northeast.

- Pockets of high demand follow parkways through developed areas of the east side and northland.

- Generally, high demand areas are those with a combination of many potential destinations, high population densities, and a diverse mix of uses.
Findings

- Many streets with bicycle lanes are located in areas with low to moderate demand.

- Existing bike lanes on Emmanuel Cleaver, Chouteau Pkwy, and Charlotte/Holmes are located in higher demand areas.

- Planned improvements throughout the urban core are poised to serve areas of high demand much better, but key areas of need remain:
 - North-south route connecting Downtown, Westport, Plaza,
 - Route serving densest parts of Northeast.
Making the Model Better

- Gather local data!
 - Calibrations based on local observations

- Measurement of regional and inter-community demand

- Incorporation of generators and attractors outside of City limits

- Revised model weights and factors based on evolving understanding of future bicycle travel patterns.
High Bicycle Demand
North
High Bicycle Demand
South